A Security Evaluation of DNSSEC with NSEC3

Jason Bau, John Mitchell Stanford University

1

Motivation

• DNSSEC around for >10 years, adoption on the way

Jason Bau

Motivation

• DNSSEC around for >10 years, adoption on the way

Home	Archives	Media Gallery	About	Help
sted by Chris Grif	fiths, Manager, DNS Eng	gineering, in Innovation		
sted by chiris offi	vears. Comcast has bee	en testing and advocating for	the widespread adop	tion of DNS
or the past couple	,,			
ecurity extensions asically, it allows w	(also known as DNSSE ebsites to secure their of	C). If you don't know what D domain information so that I	NSSEC is, you're pro SPs can validate and	bably not alone. make sure
ecurity extensions asically, it allows w othing has been to ioisoning') that re-	(also known as DNSSE rebsites to secure their of ampered with. This prev directs you to a fake or	C). If you don't know what D domain information so that I ents hackers from injecting in nefarious site. The process n	ONSSEC is, you're prol SPs can validate and false information (aka needed to secure dom	bably not alone. make sure DNS ains as well as

23 FEB

happen automatically if you are currently using our DNS.

- Evaluate DNSSEC from perspective of enterprise considering adoption
- Scientific study of DNSSEC/NSEC3 protocol
 - Model-Checking methodology
 - Found violations of stated security conditions
 - Mostly due to design trade-off
 - Investigate potential resultant danger
 - Few observations
- Offer best-practice DNSSEC/NSEC3 configuration advice

Outline

- Background
 DNS
 DNSSEC
- Finite State Enumerator (Mur ϕ) analysis
 - Security Guarantees
 - Attested Cache Resolver Design
 - Cached Record Temporal Dependencies
 - Insecure Sub-Namespace of DNSSEC zone
 - Cookie-Theft
- DNSSEC Security Observations
- Configuration Advice and Conclusions

Background DNS Lookup

Query: "www.example.com A?"

Reply	Resource Records in Reply		
3	"com. NS a.gtld.net" "a.gtld.net A 192.5.6.30"	2 Root Zone 3 (".")	
5	"example.com. NS a.iana.net" "a.iana.net A 192.0.34.43"	8 5 TLD Zone User PC Local 6 ("com.") Stub Recursive 7 ("com.") Resolver 7	
7	"www.example.com A 1.2.3.4"	Zone for "example.com	
8	"www.example.com A 1.2.3.4"		

Local recursive resolver caches these for TTL specified by RR

Jason Bau

A Security Evaluation of DNSSEC with NSEC3

DNS Packet Format

	0	1516 2324 31	TXID = Transaction ID
UDP 1	UDP Source Port	UDP Dest Port	QR = Query or Reply Opcode = Typically 0 (QUERY)
Header↓	UDP Length	UDP Checksum	AA = Authoritative Answer TC = Truncated
DNS Header	TXID	QR Opcode AATCRDRA Z ADCD RCODE	RD = Recursion Desired RA = Recursion Available
	QDCOUNT	ANCOUNT	Z = Zero Bit AD = Authenticated Data CD = Checking Disabled RCODE: 0 = No Error 2 = Server Failure or Bogus DNSSEC data D0 = DNSSEC OK (in EDNS0 heade
	NSCOUNT	ARCOUNT	
	Question Section	Answer Section RRs	
	Authority Section RRs	Additional Section RRs DO	

Sent over UDP, < 512 Bytes
TXID, UDP Source Port only "security" features

- Packets over UDP, < 512 bytes
- 16-bit TXID, UDP Src port only "security"
- Resolver accepts packet if above match
- Packet from whom? Was it manipulated?
- Cache poisoning
 - Attacker forges record at resolver
 - Forged record cached, attacks future lookups
 - Kaminsky (BH USA08)
 - Attacks delegations with "birthday problem"

"The Domain Name System (DNS) security extensions provide origin authentication and integrity assurance services for DNS data, including mechanisms for authenticated denial of existence of DNS data."

-RFC 4033

Jason Bau

DNSSEC

- Basically no change to packet format

 Object security of DNS data, not channel security
- New Resource Records (RRs)

 RRSIG : signature of RR by private zone key
 DNSKEY : public zone key
 DS : crypto digest of child zone key
 NSEC / NSEC3 :authenticated denial of existence
- Lookup referral chain (unsigned)
- Origin attestation chain (PKI) (signed)
 - Start at pre-configured trust anchors
 - DS/DNSKEY of zone (should include root)
 - \circ DS \rightarrow DNSKEY \rightarrow DS forms a link

DNSSEC Lookup

Query: "www.example.com A?"

		"example.com."
Reply	RRs in DNS Reply	Added by DNSSEC
3	"com. NS a.gtld.net" "a.gtld.net A 192.5.6.30"	"com. DS" "RRSIG(DS) by ."
5	"example.com. NS a.iana.net" "a.iana.net A 192.0.34.43"	"com. DNSKEY" "RRSIG(DNSKEY) by com." "example.com. DS" "RRSIG(DS) by com."
7	"www.example.com A 1.2.3.4"	"example.com DNSKEY" "RRSIG(DNSKEY) by example.com." "RRSIG(A) by example.com."
8	"www.example.com A 1.2.3.4"	Last Hop?

jbau@stanford.edu

TLD Zone

("com.")

Zone for

User PC

Stub

Resolver

Recursive

Resolver

Most DNS lookups result in denial-of-existence

Jason Bau

- Most DNS lookups result in denial-of-existence
- Need for offline technique

A Security Evaluation of DNSSEC with NSEC3

Jason Bau

Tuesday, January 25, 2011

Authenticated Denial-of-Existence

NSEC scheme

A Security Evaluation of DNSSEC with NSEC3

Jason Bau

Authenticated Denial-of-Existence

NSEC scheme

jbau@stanford.edu

18

NSEC3 scheme

NSEC3 scheme

- Most DNS lookups result in denial-of-existence
- Understood mandate of offline-technique
- NSEC (Next SECure)
 - Lists all extant RRs associated with an owner name
 - Points to next owner name with extant RR
 - Easy zone enumeration
- NSEC3
 - Hashes owner names
 - Public salt to prevent pre-computed dictionaries
 - NSEC3 chain in hashed order
 - Opt-out bit for TLDs to support incremental adoption
 - Non-DNSSEC children not in NSEC3 chain

Mur model

- Typical Usage (query for A RRs), 3 levels of DNSSEC zones
- Six responses from zone to record query
- Resolver queries for each

Attacker model

- All packet manipulation without key compromise
- Record signed RRs contained in packets
 Add signed RR to packets
 Delete signed RR from packets
- Create packets with its own signature
- Change unsigned parts
 All headers
 - Unsigned glue records

- "No spoof occurred in location of TLD/Auth server"
- "Attacker key is not valid key for TLD/Auth zone"
- "Accepted answer for [A-F] is correct"
- "Local record valid -> signature chain valid"

```
invariant "Local A or NS record ttl valid -> signature chain valid"
forall i: LocalId do
    (loc[i].nameA_ttl = VALID | loc[i].nameB_ttl = VALID |
    loc[i].nameC_ttl = VALID | loc[i].nameD_ttl = VALID |
    loc[i].nameE_ttl = VALID | loc[i].nameF_ttl = VALID ) ->
        (!isundefined(loc[i].tld_key) & !isundefined(loc[i].auth_key))
end;
```


With full chain-of-trust, signed existent DNSSEC records and non-opt-out denial-of-existence are safe against forgery

- Signed A RR
- Signed DS RR (Secure Delegation)
- Signed Non-opt-out NSEC3

Security Property Violations

- Insecure delegation ↔ opt-out NSEC3
 - Difference is presence of unsigned "glue" RR
 - Denial-of-service
 - RR insertion (Name-prepend)
- Cached record still valid after expiration of attesting RRs
- Delegations can be redirected to attack server
 Secure: Not exploitable with correct resolver due to DS
 - Insecure

Insecure Sub-Namespace

- NSEC3 Opt-out
 - "Does not assert the existence or non-existence of the insecure delegations that it may cover" RFC 5155
 - Only thing asserting this is insecure glue records
- Property: Possible to insert bogus pre-pended name into otherwise secure zone. (See RFC 5155)
- Insecure delegation from secure zone
 - Spoofs possible for resultant lookup results
- Acceptable for TLD, bad for enterprises

- Break security policy dependent on "domain" membership
- Mimic enterprise-level DNSSEC zone
- Zone configured with insecure sub-namespace
 Prepend false name with
 - NSEC3 opt-out
 - Insecure delegation
- Assume coarse-grain cookie 'domain' setting
 Common usage: see paypal.com

Cookie-Theft Experiment

Chain-of-Trust Expiration

- Chain-of-trust is complete at time of RR entry to cache
- RR can still be valid after an attesting signature expires
- Scenario:
 - "example.com." key compromised
 - Used to sign many RRs with long sig validity and TTL
 - Sig + Signed RR cached at recursive resolver
 - Key compromise discovered, remote zone key "roll-over"
- But signed poisoned records live on in resolver cache

Limiting Exposure Window

- Cap TTL of all cached RRs on lifetime of entire trust chain
- Reacquire expired records from chain
- But, TTL synchronicity may cause unacceptable traffic
- Resolvers cap all TTLs and Signature Validity periods
 Limit period of exposure for their customers

- Given network attacker capabilities
 - Change all DNSSEC packet header bits
 - Add recorded RRs / Delete RRs / Mangle bits within RRs
- Authenticating Resolvers must
 - Not trust any header bits
 - Build attested cache only with signed RRs with full chainof-trust
 - Answer user queries only from attested cache
 - Use unsigned glue records only as indications of delegations and pointers to child-zone server addresses
 - These must not enter attested cache
 - Already: CVE-2009-4022

Securina DNSSEC Ecosystem

- For enterprises:
 - Eliminate insecure sub-space of DNSSEC namespace
 - No NSEC3 opt-out
 - No insecure delegations
 - Fine-grained cookie "domain" restriction
- For resolver software:
 - Do not trust any header bits in replies
 - Only provide user-answers from attested cache
 Periodically re-check validity of cache contents?
- For resolver operators
 - Set artificial cap on TTL(< authoritative zone spec)
 Dravida accurate last han abannel.
 - Provide secure last-hop channel
- For end-user software
 - Provide UI indicator of lookup security
 - Provide secure last-hop channel

- 1. Authoritative zone: sign RRs with DNSSEC
- 2. Authoritative zone: do not use NSEC3 opt-out
- 3. Authoritative zone: no insecure delegations
- 4. High-level zones (root and TLD): sign and provide secure delegation
- 5. ISPs: Adopt DNSSEC in recursive resolver
- 6. ISPs+OS: Support secure channel in the last-hop between stub and recursive resolvers
- 7. Applications: Interface indicators of DNS lookup security
- Without all of these, no single party benefits from DNSSEC
- Perhaps explains long process of DNSSEC adoption
- Momentum is building, however

- DNSSEC / NSEC3 Model checking study
 - Some interesting security property violations
 - All can be mitigated by protocol/implementation config
 - Provided best-practice configuration